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Abstract 
The design of cold-formed steel columns must consider flexural buckling, torsional buckling, and 
flexural-torsional buckling. The American Iron and Steel Institute incorporated equations for the 
critical elastic buckling loads corresponding to these failure modes in the North American 
Specification for the Design of Cold-Formed Steel Members. These equations were originally 
developed for columns with consistent boundary conditions for all three modes. However it is 
common in practice to have different unbraced lengths for major axis flexure, minor axis flexure, 
and torsion. Furthermore, it is common for certain members to be oriented such that intermediate 
bracing restraint directions do not align with the principal axes. This paper investigates and 
develops a general formulation of the column buckling equation to incorporate unequal unbraced 
lengths and non-principal axes.  
 
1. Introduction 
Cold-formed steel structural members are often used in framing configurations where intermediate 
bracing provides a reduced unbraced length for one direction and twisting. A common example is 
a Zee purlin as shown in Figure 1. Since a Zee shape is point-symmetric with the shear center 
coinciding with the centroid, there is no interaction between torsional buckling and flexural 
buckling. Therefore the buckling limit is simply the smaller of the two buckling loads. 
 

 
Figure 1. Typical bracing configuration where unbraced lengths are different 
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The flexural buckling load is normally calculated using the conventional � = ���� ��⁄ , where I is 
the minor principal axis moment of inertia. But since the bracing directions do not coincide with 
the principal axes, the impact of having different unbraced lengths is not evident. The coupling of 
the two flexural modes requires further investigation. 
 
Similarly, a singly-symmetric Cee shape is commonly used with intermediate bracing to reduce 
the unbraced length for minor axis buckling and torsional buckling. Since the shear center for a 
Cee shape does not coincide with the centroid, interaction between flexural buckling and torsional 
buckling occurs. The unbraced lengths for flexure and torsion can be different, therefore 
complicating the interaction between them. 
 
The column buckling equations used in cold-formed steel design today were investigated by 
Timoshenko (1961) and others. They were further studied by Winter and Chajes (1965) for 
development of the design criteria in the AISI Specification. These buckling equations were 
developed using principal axes and equal unbraced lengths for all modes. This paper expands on 
their excellent work to consider the more general case of unequal unbraced lengths and non-
principal axes. Numerous symbols are used in this investigation which are defined Section 9. 
 
2. Flexural-Torsional Buckling 
The development of the critical buckling load for a general cold-formed steel shape must consider 
a combination of flexural buckling and torsional buckling. Figure 2 represents an arbitrary non-
symmetric cross section oriented to centroidal x and y axes which represent the two orthogonal 
directions of translational bracing. These axes need not be the principal axes. 

 
Figure 2. Arbitrary cross-section oriented to x and y bracing directions 

 
The application of axial load P at the centroid C with sufficient magnitude will produce buckling 
where the cross-section displaces u and v in the x and y directions, and rotates about its shear center 
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by angle φ. The centroid translates from C to C1, and the shear center translates from O to O1. The 
rotation causes the centroid to move to its final position C2. 
 
To maintain equilibrium, the displaced cross-section develops moments about the x and y axes, 
which are the product of the axial load P and the x and y displacements from C to C2, as shown in 
Eqs. 1 and 2. 
 
 �� = −��	 − 
��� (1) 
 �� = −�� + ���� (2) 
 
The stiffness relationship between moment and deflection for non-principal axes must consider 
unsymmetrical bending. The general form of this relationship is a pair of differential equations 
(Eqs. 3 and 4) as developed by Timoshenko (1961, p. 242) and others, which involves the product 
of inertia Ixy. Equating these to the moments defined by the buckling equilibrium relationships 
(Eqs. 1 and 2) provides two differential equations with three unknowns: u, v, and φ. 
 
 �� = ���	�� + ������ = −��	 − 
��� (3) 
 �� = ����� + ����	�� = −�� + ���� (4) 
 
A third relationship is required involving torsion, which was investigated by Timoshenko (1961, 
p. 231). Similar to the flexure equations, the stiffness relationship is equated to the buckling 
equilibrium relationship, both in terms of the torsion per unit length Tz, as shown in Eq. 5. Although 
this torsion development was presented using principal x and y axes, no assumptions were made 
that required principal axes. This relationship is applicable to any section orientation. 
 
 �� = �������� − ����� = ��
�	�� − ����� − ������� (5) 
 
The solution to these three simultaneous differential equations is developed here using a pinned 
end column of length L, and subsequently generalized for other cases. Thus we will assign the 
following boundary conditions: 
 
  = 	 = � = 0 at z = 0 and z = L  
 �� = 	�� = ��� = 0 at z = 0 and z = L 
 
The solution for u, v, and φ are therefore in the forms shown in Eq. 6. The first buckling mode 
corresponds to one half-wavelength, where n1 = n2 = n3 = 1. To accommodate different unbraced 
lengths, greater values of n may be used to produce unbraced lengths of L/n, and the nodes where 
the displacements are zero would correspond to the brace points. 
 
  = �� sin

	�
�

�
      	 = �� sin

	�
�

�
      � = �� sin

	�
�

�
 (6) 

 
As illustrated in Figure 3, we will let Ly = L/n1, Lx = L/n2, and Lt = L/n3. It should be noted that any 
set of unbraced lengths can be accommodated mathematically by defining an imaginary column 
whose length is a common multiple of the three unbraced lengths, or L = LCM(Lx, Ly, Lt). 
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Figure 3. Arbitrary column with different unbraced lengths 

 
For the general case using non-principal axes, the flexural modes are coupled such that they have 
the same half-wavelength and buckling occurs about a non-orthogonal axis. The bracing directions 
do not align with the buckling direction, but only a small component of a translational restraint 
vector is required to create an inflection point. Therefore the unbraced flexural span is the distance 
between brace points, regardless of bracing direction. 
 
For the purpose of this investigation, the coupled flexural mode solution is assumed to have a 
consistent half-wavelength throughout the column. This requires Lx to be a multiple of Ly or vice-
versa, and therefore the half-wavelength is the smaller of Lx and Ly. Defining Lf as the flexural 
half-wavelength, the displacement functions and their derivatives are then defined as follows: 
 
  = �� sin


�

��
 	 = �� sin


�

�
 � = �� sin


�

��
  (7) 

 �� = −��

�

��
� sin


�

��
 	�� = −��


�

��
� sin


�

��
 ��� = −��


�

��
� sin


�

��
 ����� = ��


�

��
� sin


�

��
 (8) 

 
Substituting these forms into the three differential equations (Eqs. 3, 4, and 5) produces the 
following set of simultaneous equations: 
 

 �� − ��� 
�

��
���� sin


�

��
− ���� 
�

��
� �� sin


�

��
+ ����� sin


�

��
= 0  

 

 �� − ��� 
�

��
���� sin


�

��
− ���� 
�

��
� �� sin


�

��
− �
��� sin


�

��
= 0 (9) 

 

 ��� 
�

��
� �� sin


�

��
− �
� 
�

��
� �� sin


�

��
− ��� 
�

��
� �� sin


�

��
− ��� − ����� 
�

��
� �� sin


�

��
= 0  

 
These equations are simplified by introducing the notations in Eq. 10, where Px and Py are the 
Euler critical loads for flexural buckling about the x and y axes, Pfx and Pfy are the coupled critical 
loads for flexural buckling about the x and y axes, Pfxy is the coupled critical load component 
attributed to unsymmetrical bending, and Pt is the critical load for torsional buckling about the 
centroid. 
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 �� =

����
��
�  �� =


����
��
�  �� = �

�	
� ��� + ��� 
�

��
�� 

 

 ��� =

����
��
� = �� ���

��
� ��� =


����
��
� = �� ���

��
� ���� =


�����
��
�  (10) 

 
Substituting the terms defined in Eqs. 7 and 10 into Eqs. 9, and multiplying the terms in the third 
equation by ��� ��⁄ , produces the following system of equations: 
 

 

���
��
�� − ��� −���� ���
−���� � − ��� −�
�
��� ��

�

��
� −�
� ��

�

��
� �� − ���������

��
�

� !
 "	 

	
	� $ 
%
 &
=

� !
 "	0 

0

	0 $ 
%
 &

 (11) 

 
The solution where all displacements are zero is not of interest, therefore the determinant of the 
coefficients must be equal to zero. Expansion of this determinant gives the general form of the 
column buckling characteristic equation: 
 

 (� − ���)(� − ���)(� − ��) − �� �	�

�	
�

��
�

��
� (� − ���) − �� �	�

�	
�

��
�

��
� (� − ���) 

 +	2�� �	�	
�	
�

��
�

��
� ���� − �� − �������� = 0 (12) 

 
As a cubic equation, there are three possible root values for P. Inserting the lowest positive root in 
Eq. 11 establishes the relative magnitudes of the displacement functions u, v, and φ for the 
controlling mode. 
 
Another buckling mode is possible where the flexural buckling direction is associated with the 
larger unbraced length, with no displacement in the perpendicular direction. For buckling about 
the x axis, the displacement functions are as follows: 
 
  = 0 	 = �� sin


�

��
 � = �� sin


�

��
  (13) 

 �� = 0 	�� = −��

�

��
� sin


�

��
 ��� = −��


�

��
� sin


�

��
 ����� = ��


�

��
� sin


�

��
 (14) 

 
This reduces the system of equations to: 
 

 ' � − �� −�
�
−�
� ��

�

��
� �� − ������( )

		  

	� 

* = )	0 

	0 

* (15) 

 
Expansion of the determinant results in the following additional equation: 
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 (� − ��)(� − ��) − �� �	�

�	
�

��
�

��
� = 0 (16) 

 
Similarly for buckling about the y axis: 
 

 (� − ��)(� − ��) − �� �	�

�	
�

��
�

��
� = 0 (17) 

 
3. Specific Cases 
 
Principal Axes 
If the column bracing directions align with the principal axes, the product of inertia Ixy is zero. 
Therefore the terms in the general buckling equation containing Pfxy drop out, reducing it to: 
 

 (� − ���)(� − ���)(� − ��) − �� �	�

�	
�

��
�

��
� (� − ���) − �� �	�

�	
�

��
�

��
� (� − ���) = 0 (18) 

 
The solution must also consider the orthogonal cases. The controlling roots of Eqs. 16 and 17 are 
given by the following quadratic solutions: 
 

 � =
�

��
+��� + ��� −,��� + ���� − 4-����.         where - = 1 −

�	�

�	
�

��
�

��
� (19) 

 � =
�

��
+(�� + ��) −,(�� + ��)� − 4/����.         where / = 1 −

�	�

�	
�

��
�

��
�  (20) 

 
For the case where β = 0, Eq. 16 becomes � = ���� ��� + ���⁄ . 
For the case where γ = 0, Eq. 17 becomes 	� = ���� (�� + ��)⁄ . 
If β or γ is less than zero, one root is negative but Eqs. 19 and 20 provide the positive root. 
 
Equal Unbraced Lengths 
If all the unbraced lengths are equal (Lx = Ly = Lf = Lt), the buckling loads Pfx and Pfy can be 
replaced by Px and Py, and the general buckling equation is reduced as shown in Eq. 21. There is 
no need to use Eqs. 19 and 20 because Eq. 21 considers all modes. This form is applicable to any 
orientation of x and y axes, including principal axes where Pfxy is 0. So it may be more convenient 
to use the principal axes properties. 
 

 (� − ��)(� − ��)(� − ��) − �� �	�

�	
� (� − ��) − �� �	�

�	
� (� − ��) 

 +	2�� �	�	
�	
� ���� − �� − �������� = 0 (21) 

 
Principal Axes, Equal Unbraced Lengths 
The equal unbraced length case above is simplified further using principal axes. The terms 
containing Pfxy drop out, reducing Eq. 21 to Eq. 22. This is equivalent to the Timoshenko (1961) 
equation. 
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 (� − ��)(� − ��)(� − ��) − �� �	�

�	
� (� − ��) − �� �	�

�	
� (� − ��) = 0 (22) 

 
Point-Symmetric 
The shear center for a point-symmetric section, such as a Zee shape, coincides with the centroid 
(i.e., xo = 0, yo = 0). This removes three terms from the general buckling equation, reducing it to:  
 
 (� − ���)(� − ���)(� − ��) − (� − ��)����� = 0 (23) 
 
One root is obtained by setting (P – Pt) = 0, or P = Pt. The other two roots are obtained from the 
solution to the remaining quadratic equation: 
 

 � =
�

�
0��� + ���1± �

�
2(��� − ���)� + 4�����  (24) 

 
Factoring Eq. 24 for the lower root reveals that buckling occurs about the minor principal axis: 
 

 � =

��

��
� 3�� 0�� + ��1− �

�
,(�� − ��)� + 4���� 4 = 
����

��
�  (25) 

 
The orthogonal cases shown in Eqs. 16 and 17 must also be considered as potential controlling 
cases. Since the shear center coordinates are zero, these equations reduce to roots Px, Py, and Pt. 
 
Singly-Symmetric 
The shear center for a singly-symmetric section, such as a Cee shape, lies on the axis of symmetry. 
If this axis is the x axis, the properties Ixy and yo are zero.  This removes three terms from the 
general buckling equation, reducing it to: 
 

 (� − ���)(� − ���)(� − ��) − �� �	�

�	
�

��
�

��
� (� − ���) = 0 (26) 

 
One root is obtained by setting (P – Pfy) = 0, or P = Pfy. Since the flexural roots are uncoupled, Pfx 
and Pfy can be replaced by Px and Py, so the controlling case is the smaller of Py and Eq. 19. 
 
Doubly-Symmetric 
For a doubly-symmetric section, the shear center coincides with the centroid as in the point-
symmetric case (xo = yo = 0), and if the bracing directions align with the principal axes, Ixy = 0 and 
Pfxy = 0. The flexural modes are uncoupled and the buckling equation reduces to the simple form 
in Eq. 27, where the controlling buckling load is the smallest of Px, Py, and Pt. 
 
 (� − ��)(� − ��)(� − ��) = 0 (27) 
 
Fully Braced Against Twisting 
It is difficult to restrain a column against twisting without also restraining translation. But for a 
section with high torsional stiffness, the torsional buckling mode can be disregarded. This is 
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accomplished by setting Lt = 0 in Eq. 12, thus removing three of the terms. Then factoring out the 
irrelevant root (P – Pt) produces Eq. 28, which is the same as the point-symmetric solution.  
 
 (� − ���)(� − ���) − ����� = 0 (28) 
 
Fully Braced Against Translation 
If a column is fully braced in one direction, Lf approaches zero. Eq. 12 can be adapted to this case 
by multiplying each term by ��� ������⁄  and dropping the resulting occurrences of PLf

2. The 
solution is reduced to Eq. 29 which represents torsional buckling about the shear center. For the 
case where translation of the centroid is restrained, or where the shear center coincides with the 
centroid, the solution is simply P = Pt. 
 

 ��	�
�	
� �� + �	�

�	
� �� + 2

�	�	
�	
� ������ +


��

��
� (���� − ���� )�� − ��� = 0 (29) 

 
For buckling perpendicular to the bracing direction, Eq. 19 or 20 should be used as applicable. If 
the column is also fully braced against twisting, Eq. 19 or 20 controls and the buckling load 
resolves to Px or Py as applicable. If the shear center is restrained in both the x and y directions, 
Eq. 29 provides the controlling torsional buckling load.  
 
Other Boundary Conditions 
The development of Eq. 12 used pinned end boundary conditions, with the displacement solutions 
in the basic sine forms shown in Eq. 6. However, the general form of the displacement solution to 
the differential equations is: 
 
 5� sin 	

�

�
+ 6� cos 	

�

�
 (30) 

 
Through trigonometric relationships, this form can be represented by a shifted sine function as 
shown in Eq. 31. Therefore other boundary conditions can be accommodated with the same 
solution by simply shifting the z position by zo along the same multi-wavelength column. 
 

 5� sin 	

�

�
+ 6� cos 	

�

�
= �� sin

	

����	�

�
 (31) 

 where �� = 25�� + 6��        7� =
�

	


tan�� �


�

  

 
Effective length factors are used for various boundary conditions to establish equivalent lengths 
which correspond to the half-wavelength of the buckled shape. The development of Eq. 12 used 
general half-wavelengths of L/n. The effective length factor K can be accommodated by using a 
different number of half-wavelengths n', such that 8� 9�⁄ = � 9⁄ , or 9� = 89. Therefore, KxLx, 
KyLy, and KtLt can be used in place of Lx, Ly, and Lt, respectively. However, the assumption for 
coupled flexural buckling still requires KxLx to be a multiple of KyLy, or vice-versa. 
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4. Alternate Forms 
To facilitate either direct or iterative solutions, the general buckling equation (Eq. 12) can be 
rearranged into a cubic polynomial form as: 
 

 �1 −
�	�

�	
�

��
�

��
� −

�	�

�	
�

��
�

��
���� − :��� �1 −

�	�

�	
�

��
�

��
��+ ��� �1 −

�	�

�	
�

��
�

��
��+ �� − 2���� �	�	

�	
�

��
�

��
�; �� 

 +0������ + ����� + ����� − ����� 1� − 0������ − ����� 1�� = 0 (32) 
 
This and all of the preceding buckling equations are stated in terms of axial compressive forces. 
These can be restated using compressive stresses, where axial stress < = � �⁄ . 
 

 <�� =

��

��� ��⁄ ��
 <�� =


��

��� ��⁄  
� <� = �

!�	
� ��� + ��� 
�

��
�� 

 

 <�� =

��

��� ��⁄ ��
= <�� ���

��
� <�� =


��

��� ��⁄  
� = <�� ���

��
� <��� =


�����
!��

�  (33) 

 
The general buckling equation (Eq. 12) is provided here using stresses: 
 

 (< − <��)(< − <��)(< − <�) − <� �	�

�	
�

��
�

��
� (< − <��) − <� �	�

�	
�

��
�

��
� (< − <��) 

 +	2<� �	�	
�	
�

��
�

��
� <��� − (< − <�)<���� = 0 (34) 

 
Or in the cubic polynomial form as: 
 

 �1 −
�	�

�	
�

��
�

��
� −

�	�

�	
�

��
�

��
��<� − :<�� �1 −

�	�

�	
�

��
�

��
��+ <�� �1 −

�	�

�	
�

��
�

��
��+ <� − 2<��� �	�	

�	
�

��
�

��
�; <� 

 +0<��<�� + <��<� + <��<� − <���� 1< − 0<��<�� − <���� 1<� = 0 (35) 
 
Dividing Eq. 35 by <��<��<� and introducing notations for the dimensionless coefficients results 
in another useful form containing stress ratios which sum to 1: 
 

 
�����������

������
� �

��������
−

���

�����
−

���

�����
−

�������
�

������
+

�

���
+

�

���
+

�

��
= 1 (36) 

    where = = 1 −
�	�

�	
�

��
�

��
� −

�	�

�	
�

��
�

��
� - = 1 −

�	�

�	
�

��
�

��
� / = 1 −

�	�

�	
�

��
�

��
� > =

�	�	
�	
�

��
�

��
� 

 
The orthogonal buckling cases take the following form: 
 

 < =
�

��
+�<�� + <��−,�<�� + <��� − 4-<��<�.         where - = 1 −

�	�

�	
�

��
�

��
� (37) 

 < =
�

��
+(<�� + <�) −,(<�� + <�)� − 4/<����.         where / = 1 −

�	�

�	
�

��
�

��
�  (38) 
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The specific cases listed in Section 3 are restated here using stresses. 
 
Principal Axes 
 

 (< − <��)(< − <��)(< − <�) − <� �	�

�	
�

��
�

��
� (< − <��) − <� �	�

�	
�

��
�

��
� (< − <��) = 0 (39) 

 
Equal Unbraced Lengths 
 

 (< − <��)(< − <��)(< − <�) − <� �	�

�	
� (< − <��) − <� �	�

�	
� (< − <��) 

 +2<� �	�	
�	
� <��� − <���� (< − <�) = 0 (40) 

 
Principal Axes, Equal Unbraced Lengths 
 

 (< − <��)(< − <��)(< − <�) − <� �	�

�	
� (< − <��) − <� �	�

�	
� (< − <��) = 0 (41) 

 
Point-Symmetric 
 

 < = <��        < = <��        < = <�        < =

��

��� ��⁄ ��
 (42) 

 
Singly-Symmetric 
 

 < = <��        < =
�

��
+�<�� + <��±,�<�� + <��� − 4-<��<�.        - = 1 −

�	�

�	
�

��
�

��
� (43) 

 
Doubly-Symmetric 
 
 < = <��            < = <��            < = <� (44) 
 
Fully Braced Against Twisting 
 

 < = <��        < = <��        < =

��

��� ��⁄ ��
 (45) 

 
Fully Braced Against Translation 
 

 ��	�
�	
� �� + �	�

�	
� �� + 2

�	�	
�	
� ����<� +


��

!��
� (���� − ���� )�< − <�� = 0 (46) 
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5. Numerical Analysis 
 
Several finite element analyses were performed to compare with the predicted elastic buckling 
stresses. For flexural modes and torsional modes, agreement was very good as expected. But for 
combined flexural-torsional modes, it was observed that the torsional displacements did not follow 
the anticipated waveform.  
 
When flexural and torsional buckling occur together, the direction of flexure dictates the direction 
of rotation such that the centroid always moves away from the neutral position in the same 
direction as flexure. For cases where Lt is less than Lf, Figure 4 illustrates that the torsional 
waveform exhibits additional curvature, where the rotation between brace points occurs in only 
one direction, with opposite curvature at the brace points within the flexural span.  

 
Figure 4. Flexural-torsional buckling with Lt < Lf 

 
Whether brace points occur at mid-point, third-points, quarter-points, or more, the first and last 
torsional spans behave as pinned-fixed segments where the theoretical effective length factor is 
about 0.7. Therefore it is appropriate to multiply Lt by 0.7 for flexural-torsional cases where Lt is 
less than Lf. 
 
For cases where the Lt is greater than Lf, the direction of flexure dictates the direction of rotation 
in the same manner. Therefore the half-wavelength for torsion matches the half-wavelength for 
flexure, so Lt should be set equal to Lf. But for the pure torsional mode (Eqs. 42, 44, 46), σt should 
not use a reduced Lt. 
 
Figure 5 compares the flexural-torsional buckling stresses for an example Cee shape. The solid 
curves are based on Eq. 37 with the adjustments to Lt described above. The plotted finite element 
results (x) were very close for all cases. The current AISI provisions match for cases with equal 
unbraced lengths. But for all other cases, the AISI buckling stresses are much lower and very 
conservative. 
 

Lf 

Lt Lt 
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Figure 5. Flexural-torsional buckling stress for C4x1.5x0.5 

 
 
6. Impact on Design 
The equations developed in this investigation differ from those used in the AISI Specification, 
specifically for cases where the unbraced lengths are unequal. For a point-symmetric section, such 
as a Zee shape, AISI specifies the critical elastic buckling stress as the lesser of ��  and 
��� ��� �⁄ 	�⁄  for minor principal axis buckling. This development confirms these calculations, 
and clarifies that KL should be the smaller of the two flexural effective lengths. However, the 
larger effective length must also be checked for buckling about its corresponding axis. 
 

 
Figure 6. Flexural buckling stress for point-symmetric section with unequal unbraced lengths 
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Figure 6 shows the flexural buckling stress for a typical Zee section. The ratio �� ��⁄  for this section 
is 3.5, so if the ratio �� ��⁄  exceeds 3.5 the controlling flexural buckling mode is about the x axis. 
For the majority of common Zee shapes, columns with minor axis bracing at quarter points or 
closer need to be checked for buckling about the major axis. 
 
For a singly-symmetric section, the AISI elastic buckling equation is equivalent to Eq. 43, except 
that the coefficient β must account for cases where �� 
 ��. If Lt is less than Lx, the effect of the 
shear center offset is reduced and the resulting buckling stress is higher. If Lt is greater than Lx, 
Lt should be taken as Lx and the resulting buckling stress is higher. 

 
For a non-symmetric section, the AISI elastic buckling equation is equivalent to Eq. 41, and 
therefore does not account for unequal unbraced lengths or non-principal axes as in Eq. 34. Similar 
to the singly-symmetric case, if Lt is less than the flexural buckling unbraced lengths, the effect of 
the shear center offset is reduced and the resulting buckling stress is higher. Figure 7 illustrates 
this impact for a non-symmetric eave strut. This example used principal axes so a direct 
comparison to AISI values could be made. 
 

 
Figure 7. Buckling stress for non-symmetric section with unequal unbraced lengths 

 
The general form of the buckling equation for the coupled flexural mode (Eq. 34) uses a common 
half-wavelength Lf, and accommodates the use of non-principal axes. Therefore, the resulting 
buckling stress is the same for any orientation of the cross-section. This is demonstrated in Table 1 
where the buckling stress for the non-symmetric eave strut shown in Figure 7 is calculated using 
Eq. 34 for a specific set of unbraced lengths at various rotated angles. 
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Table 1: Flexural-torsional buckling of Eave Strut 8x5x3x14ga, Lf = 180 in, Lt = 90 in 
Angle 
(deg) 

xo 
(in) 

yo  
(in) 

σfx  
(ksi) 

σfy  
(ksi) 

σfxy  
(ksi) 

σt  
(ksi) 

σ  
(ksi) 

-10.187 -3.006 -1.059 97.70 19.78 0.00 31.25 19.386 

0 -2.771 -1.574 95.26 22.22 -13.56 31.25 19.386 

15 -2.269 -2.238 83.59 33.89 -30.01 31.25 19.386 

30 -1.613 -2.749 65.25 52.23 -38.41 31.25 19.386 

45 -0.846 -3.072 45.18 72.30 -36.52 31.25 19.386 

60 -0.022 -3.187 28.74 88.75 -24.85 31.25 19.386 

75 0.803 -3.084 20.33 97.15 -6.51 31.25 19.386 

90 1.574 -2.771 22.22 95.26 13.56 31.25 19.386 

 
Since the coupled flexural mode equation is applicable at any orientation, the principal axis case 
(Eq. 39) along with the orthogonal cases (Eqs. 37 and 38) can be readily compared to the current 
AISI buckling equation for non-symmetric sections. Table 2 summarizes the changes and the 
impact to the resulting buckling stress. 
 

Table 2: Comparison to AISI general buckling equation 
Change Impact to Buckling Stress 

Common unbraced length for both 
flexural directions (smaller of Lx and Ly) 

No change for Lx = Ly  
Increased for Lx ≠ Ly  

Shear center offset multiplied by Lt / Lf  

No change for concentric shear center  
Increased for Lt < Lf  
No change for Lt > Lf  (use Lt = Lf) 

Flexural and torsional buckling directions 
are coupled 

No change for Lt = Lf  
Increased for Lt < Lf (use 0.7 Lt) 
Increased for Lt > Lf  (use Lt = Lf) 

Orthogonal modes checked separately 

No change for Lx = Ly  
No change for symmetric sections  
Decreased for point-symmetric sections 
Increased for non-symmetric sections  

 
 
7. Conclusions 
A general column buckling equation for cold-formed steel members has been developed to 
consider the impact of unequal unbraced lengths and bracing directions which do not align with 
the principal axes. Coupling of flexural buckling modes about the x and y axes produces buckling 
with a common half-wavelength about a single rotated axis. In addition to this mode, the 
orthogonal buckling modes must also be considered. 
 
A key assumption in this development was that the half-wavelength for flexural buckling is 
consistent throughout the length of the column. For the effective lengths KxLx and KyLy, if one is 
not a multiple of the other, the coupled flexural buckling inflection points will not be evenly 
spaced. Some half-wavelengths will be less than both KxLx and KyLy, providing a stiffening effect 
to the overall column. For this and other cases where boundary conditions produce varying 
wavelengths, predictions using the buckling equation developed herein will be conservative. 
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In flexural-torsional buckling, the direction of flexure dictates the direction of rotation. Therefore, 
the effective length for torsional buckling may be impacted. If Lt is less than Lf, the torsional span 
behaves as pinned-fixed so that an effective length factor of 0.7 should be used. For cases where 
Lt is greater than Lf, the effective length for torsion should be equal to that for flexure. 
 
These new buckling developments provide refinements to the current AISI equations for cases 
with symmetry, and provide a solution for non-principal axis bracing which has not previously 
been available. Unequal unbraced lengths may increase the column buckling stress relative to 
current AISI provisions. These cases are commonly utilized in cold-formed steel framing, and 
proper handling is necessary to ensure safe and cost effective designs. It is therefore recommended 
that the AISI design provisions for column buckling be modified to incorporate these more general 
forms. This will benefit the engineer so that more complex rational methods such as finite element 
analysis are not required. 
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9. Notation 
A Area of cross-section 
Cw Torsional warping constant 
E Modulus of elasticity 
G Shear modulus of elasticity 
J Saint-Venant torsion constant 
Ix, Iy Moment of inertia about x and y axes 
Ixy Product of inertia about x and y axes 
I2 Moment of inertia about minor principal axes 

Kx, Ky, Kt Effective length factors for buckling about x axis, y axis, and torsion 
L Column length 
Lx, Ly, Lt Unbraced lengths for buckling about x axis, y axis, and torsion 
Lf Half-wavelength for coupled flexural buckling (smaller of Lx and Ly) 
Mx, My Moment about x and y axes 
P Critical elastic buckling axial load 
Px, Py, Pt Critical axial load for elastic buckling about x axis, y axis, and torsion 
Pfx, Pfy Coupled critical axial loads for flexural buckling about the x and y axes 
Pfxy Coupled critical axial load component attributed to unsymmetrical bending 
ro Polar radius of gyration about shear center 
rx, ry Radius of gyration about x and y axes 
r2 Radius of gyration about minor principal axis 

Tz Torsion per unit length of column 
u, v, φ Buckling displacements in the x and y directions, and angle of twist 
u", v", φ" Second derivative of buckling displacements with respect to z  
u"" , v"" , φ""  Fourth derivative of buckling displacements with respect to z  
x, y Orthogonal coordinate axes of cross-section corresponding to bracing directions 
xo, yo Coordinates of shear center relative to centroid of cross-section 
z Longitudinal axis of column 
α, β, γ, δ Dimensionless factors used in polynomial form of buckling equation 
σ Critical elastic buckling axial stress 
σex, σey, σt Critical axial stress for elastic buckling about x axis, y axis, and torsion 
σfx, σfy Coupled critical axial stress for flexural buckling about the x and y axes 
σxy Coupled critical axial stress component attributed to unsymmetrical bending 
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Appendix: Buckling Stress Comparisons 
 
 

Table A1. Flexural buckling stress for Z4x1.5x0.5 
Lx 
(in) 

Ly 
(in) 

Buckling 
Mode 

Fcre 
(ksi) 

Fcre AISI 
(ksi) 

Fcre FEA 
(ksi) 

Fcre AISI 
/ Fcre 

Fcre FEA 
/ Fcre 

216 216 XY 1.440 1.440 1.439 1.000 0.999 

216 108 XY 5.759 5.759 5.750 1.000 0.998 

216 72 XY 12.958 12.958 12.918 1.000 0.997 

216 54 XY 23.037 23.037 22.905 1.000 0.994 

216 54 X 15.249 - 15.120 - 0.992 

     Average 1.000 0.996 

     Std Dev 0.000 0.003 

 
 
 

Table A2. Flexural-torsional buckling stress for C4x1.5x0.5 
Lx 
(in) 

Lt 
(in) 

Lt/Lx 
(in) 

Fcre 
(ksi) 

Fcre AISI 
(ksi) 

Fcre FEA 
(ksi) 

Fcre AISI 
/ Fcre 

Fcre FEA 
/ Fcre 

54 54 1 32.631 32.631 32.273 1.000 0.989 

78 78 1 20.138 20.138 19.867 1.000 0.987 

108 108 1 14.430 14.430 14.195 1.000 0.984 

144 144 1 11.378 11.378 11.184 1.000 0.983 

180 180 1 9.575 9.575 9.423 1.000 0.984 

216 216 1 8.204 8.204 8.092 1.000 0.986 

72 144 2 22.153 12.742 21.918 0.575 0.989 

90 180 2 17.213 11.380 16.998 0.661 0.988 

126 252 2 12.647 9.942 12.461 0.786 0.985 

144 72 0.5 29.676 17.607 29.362 0.593 0.989 

180 90 0.5 19.746 12.809 19.650 0.649 0.995 

216 108 0.5 14.074 9.913 14.037 0.704 0.997 

252 126 0.5 10.515 7.938 10.497 0.755 0.998 

144 36 0.25 33.598 27.519 33.077 0.819 0.985 

180 45 0.25 21.507 17.943 21.357 0.834 0.993 

216 54 0.25 14.939 12.697 14.891 0.850 0.997 

252 63 0.25 10.978 9.497 10.964 0.865 0.999 

288 72 0.25 8.407 7.392 8.402 0.879 0.999 

     Average 0.832 0.990 

     Std Dev 0.146 0.006 
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Table A3. Buckling stress for Eave Strut 4x3x2 
Lx 
(in) 

Ly  
(in) 

Lt 
(in) 

Buckling 
Mode 

Fcre  
(ksi) 

Fcre FEA 
(ksi) 

Fcre FEA 
/ Fcre 

   XYT 4.734 4.700 0.993 

216 216 216 XT 5.026 4.986 0.992 

   T 5.025 4.986 0.992 

   XYT 7.269 7.194 0.990 

216 216 108 XT 18.346 18.042 0.983 

   T 12.125 12.095 0.998 

   XYT 11.900 11.828 0.994 

216 108 108 XT 18.346 18.042 0.983 

   T 12.125 12.095 0.998 

   XYT 23.428 23.173 0.989 

216 72 72 XT 21.936 21.867 0.997 

   T 23.758 23.427 0.986 

   XYT 29.063 28.727 0.988 

216 108 54 XT 22.312 22.059 0.989 

   T 40.013 38.498 0.962 

   XYT 39.518 38.488 0.974 

216 54 108 XT 18.346 18.042 0.983 

   T 12.125 12.095 0.998 

     Average 0.988 

     Std Dev 0.009 

 


