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Abstract

The design of cold-formed steel columns must cardidxural buckling, torsional buckling, and
flexural-torsional buckling. The American Iron a8tkel Institute incorporated equations for the
critical elastic buckling loads corresponding tedé failure modes in the North American
Specification for the Design of Cold-Formed Steetrivbers. These equations were originally
developed for columns with consistent boundary @ for all three modes. However it is
common in practice to have different unbraced lesd@br major axis flexure, minor axis flexure,
and torsion. Furthermore, it is common for certagmbers to be oriented such that intermediate
bracing restraint directions do not align with thencipal axes. This paper investigates and
develops a general formulation of the column bungkkquation to incorporate unequal unbraced
lengths and non-principal axes.

1. Introduction

Cold-formed steel structural members are often us&édming configurations where intermediate
bracing provides a reduced unbraced length fordineetion and twisting. A common example is
a Zee purlin as shown in Figure 1. Since a Zeeeslmpoint-symmetric with the shear center
coinciding with the centroid, there is no interantibetween torsional buckling and flexural
buckling. Therefore the buckling limit is simplygtlsmaller of the two buckling loads.
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Figure 1. Typical bracing configuration where urdae lengths are different
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The flexural buckling load is normally calculatesing the conventionad = 72EI/L?, wherel is

the minor principal axis moment of inertia. But@@rnthe bracing directions do not coincide with
the principal axes, the impact of having differenbraced lengths is not evident. The coupling of
the two flexural modes requires further investigati

Similarly, a singly-symmetric Cee shape is commardgd with intermediate bracing to reduce
the unbraced length for minor axis buckling andgitmral buckling. Since the shear center for a
Cee shape does not coincide with the centroidranten between flexural buckling and torsional

buckling occurs. The unbraced lengths for flexurel dorsion can be different, therefore

complicating the interaction between them.

The column buckling equations used in cold-formegklsdesign today were investigated by
Timoshenko (1961) and others. They were furthedistl by Winter and Chajes (1965) for
development of the design criteria in the AISI Speation. These buckling equations were
developed using principal axes and equal unbragragths for all modes. This paper expands on
their excellent work to consider the more geneeslecof unequal unbraced lengths and non-
principal axes. Numerous symbols are used in tiviestigation which are defined Section 9.

2. Flexural-Torsional Buckling

The development of the critical buckling load fayeneral cold-formed steel shape must consider
a combination of flexural buckling and torsionakkling. Figure 2 represents an arbitrary non-
symmetric cross section oriented to centroddahdy axes which represent the two orthogonal
directions of translational bracing. These axesime® be the principal axes.
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Figure 2. Arbitrary cross-section orientedxtandy bracing directions

The application of axial load P at the centroid @hwsufficient magnitude will produce buckling
where the cross-section displacemndv in thex andy directions, and rotates about its shear center



by angle@ The centroid translates froéito C,, and the shear center translates f@mno O,. The
rotation causes the centroid to move to its fireifpon C,.

To maintain equilibrium, the displaced cross-sectievelops moments about tkendy axes,
which are the product of the axial load P andxthedy displacements fror@ to C,, as shown in

Egs. 1 and 2.

M, = —P(v - xo¢) (1)
M, = —-P(u+y,$) (2)

The stiffness relationship between moment and difie for non-principal axes must consider
unsymmetrical bending. The general form of thistiehship is a pair of differential equations
(Egs. 3 and 4) as developed by Timoshenko (196242). and others, which involves the product

of inertialyy. Equating these to the moments defined by the Imgclequilibrium relationships
(Egs. 1 and 2) provides two differential equatiaih three unknownas, v, and@

M, = ELv" + EL,yu" = —P(v — x,¢) 3)
M, = ELu" + EL,v" = —P(u + y,¢) 4)

A third relationship is required involving torsiowhich was investigated by Timoshenko (1961,
p. 231). Similar to the flexure equations, thefiséis relationship is equated to the buckling
equilibrium relationship, both in terms of the forsper unit lengtfz, as shown in Eq. 5. Although
this torsion development was presented using ahgiandy axes, no assumptions were made
that required principal axes. This relationshippglicable to any section orientation.

TZ — ECW¢”” _ G]d)ll — P(xov” _ youll) _ Pr02¢ll (5)

The solution to these three simultaneous diffea¢m®fuations is developed here using a pinned
end column of length, and subsequently generalized for other casess Weuwill assign the
following boundary conditions:

u=v=¢=0 atz=0andz=L
u'=v"=¢"=0 atz=0andz=L

The solution fow, v, and g are therefore in the forms shown in Eq. 6. Thst fiuckling mode
corresponds to one half-wavelength, where n, =n; = 1. To accommodate different unbraced
lengths, greater values nfmay be used to produce unbraced lengthgmgfand the nodes where
the displacements are zero would correspond tbriee points.
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u = A; sin v = A, sin ¢ = Ajsin n3an (6)
As illustrated in Figure 3, we will léty = L/n;, Lx = L/n,, andL; = L/n;. It should be noted that any
set of unbraced lengths can be accommodated maiibaltyaby defining an imaginary column

whose length is a common multiple of the three aoéd lengths, dr = LCM(Ly, Ly, Ly).
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Figure 3. Arbitrary column with different unbrackehgths

For the general case using non-principal axedfleéxaral modes are coupled such that they have
the same half-wavelength and buckling occurs abmain-orthogonal axis. The bracing directions
do not align with the buckling direction, but ordysmall component of a translational restraint
vector is required to create an inflection poiritefiefore the unbraced flexural span is the distance
between brace points, regardless of bracing doecti

For the purpose of this investigation, the coudlegural mode solution is assumed to have a
consistent half-wavelength throughout the coluntris Tequired  to be a multiple oLy or vice-
versa, and therefore the half-wavelength is thellsmaf Ly andLy. DefiningL; as the flexural
half-wavelength, the displacement functions and therivatives are then defined as follows:

. Tz . Tz . TMZ
u=A;sin— v =A4,sin— ¢ = Az sin— (7)
Lg L¢ Le

nz 2

" n?
u' =—A;—sin—
L L¢

T

2 4
T . . Tz T . Tz

v’ =—-A,—sin— ¢" =—-A;5sin— ¢"" =A;—sin— (8)
L% Lg L Lt t

Substituting these forms into the three differdnéiguations (Egs. 3, 4, and 5) produces the
following set of simultaneous equations:

2 nz w2 nz nz
P—-—El,—-)|A;sin——El,,—A,sin—+ Py, A;sin— =0
( vz )t It xy 1z 2 It YoAs3 It
P—EL ™) A, sin™ — EL,™ A, sin™ — Px,A;sin™ = 0 )
x L% 2 Lg xy L% 1 Lg 0413 L -
w2 . Tz w2 . TZ m# . Tz o T2 . TZ
Py,—A; sin—— Px,— A, sin—— EC,, 7 A3 sin—— (G] — Pry) 5 Azsin—=0
1% L 12 Lg Lt Lt L2 Lt

These equations are simplified by introducing tbeations in Eq. 10, wherex andPy are the
Euler critical loads for flexural buckling abouttkandy axes Pk andPsy are the coupled critical
loads for flexural buckling about theandy axes,Psy is the coupled critical load component

attributed to unsymmetrical bending, aRdis the critical load for torsional buckling abdbe
centroid.



_ m2Ely _ m2El,

1 2
P = P == (6] +EC, %)
="z y= e =\ +EC
T2El, L% m%El,, 13 T2Elyy
Pfx L% Pxﬁ Pfy - L% - PyL_% Pfxy - L% (10)

Substituting the terms defined in Egs. 7 and 10 Eqs. 9, and multiplying the terms in the third
equation byL.Z /72, produces the following system of equations:

P — Pfy _Pfxy Pyo 1(u 0
_Pfxy P — Pfx _Pxo v »r=<0 (11)
Py, L _py L (P — P12

| © 702 012 t’lo | \ ¢ 0

The solution where all displacements are zero isohinterest, therefore the determinant of the
coefficients must be equal to zero. Expansion of determinant gives the general form of the
column buckling characteristic equation:

P—P.)(P—P.)P—P)—p2¥lip _p y_p2XLip_p
(P = Py)(P = Pr)(P = P) — P2 (P pr) — P2 (P — )
Yo L}
+2P2xrg L—%Pfxy _(P_Pt)Pf%Cy = 0 (12)

As a cubic equation, there are three possiblevaloes forP. Inserting the lowest positive root in
Eq. 11 establishes the relative magnitudes of ieplatement functions, v, and ¢ for the
controlling mode.

Another buckling mode is possible where the flekiwackling direction is associated with the
larger unbraced length, with no displacement ingegendicular direction. For buckling about
thex axis, the displacement functions are as follows:

. Tz . TZ
u=20 v=A,sin— ¢ = Az sin— (13)
Ly Lt
w? . mz
u' =0 v'=—-A4,=sin—
LX LX

nz nz

¢ = —A;Tsin™ ¢ = A, Zsin™ (14)
3127 L, 37 L,

This reduces the system of equations to:

P—P,  —Px, (v 0
12 = (15)
—Px, é (P = P15 ¢ 0

Expansion of the determinant results in the follayvadditional equation:



2
(P—Px)(P—Pt)—PZ%Z—éz 0 (16)
Similarly for buckling about thg axis:
3 Lt
(P—Py)(P—Pt)—PZi—géz 0 (17)

3. Specific Cases

Principal Axes
If the column bracing directions align with thermipal axes, the product of inertig, is zero.
Therefore the terms in the general buckling equatmntainingPsxy drop out, reducing it to:

x§ L}
r¢ L%

272
(P = Py)(P = P)(P = P) = P22 2 (P = P) — P?

e L%

(P—P)=0 (18)

The solution must also consider the orthogonalsaBee controlling roots of Eqs. 16 and 17 are
given by the following quadratic solutions:

272

P =% [P + P) — /(P + P)2 — 4BP,P,] whereg = 1 — ’:—2% (19)
3 L

P=[(B +P)~ (B +P)?—4yRP|  wherg =1~ = (20)

For the case whe®= 0, Eq. 16 becom&s = P,P,/(P, + P;).
For the case whene= 0, Eq. 17 becomeB = P,P,/(P, + P;).
If Bor yis less than zero, one root is negative but Egy&nt 20 provide the positive root.

Equal Unbraced Lengths

If all the unbraced lengths are equi) € Ly =L¢ =L¢), the buckling load®s andPs, can be
replaced byPx andPy, and the general buckling equation is reducedhaws in Eq. 21. There is
no need to use EQgs. 19 and 20 because Eq. 21 esaitimodes. This form is applicable to any
orientation ofx andy axes, including principal axes whé?gy is 0. So it may be more convenient
to use the principal axes properties.

2 2
(P=PR)(P —P)(P—P)— P25 (P—P)—P*3(P=-PR)
+ 2p2 "rf Pery — (P — P)PE, =0 (21)

Principal Axes, Equal Unbraced Lengths

The equal unbraced length case above is simplifiether using principal axes. The terms
containingPsxy drop out, reducing Eq. 21 to Eq. 22. This is egl@nt to the Timoshenko (1961)
equation.



2 2
(P—B)P—P)P-P)— PZZ—E(P —P,)—P? ’:—g(P —P)=0 (22)
Point-Symmetric
The shear center for a point-symmetric sectionhsagca Zee shape, coincides with the centroid
(i.e.,xo = 0,Yo = 0). This removes three terms from the genereklng equation, reducing it to:

(P — Pry)(P — P )(P — P) — (P — PP, = 0 (23)

One root is obtained by setting ¢ R) = 0, orP = P;. The other two roots are obtained from the
solution to the remaining quadratic equation:

1 1
P =E(Pfx + Pfy) i E\/(Pfx - Pfy)z + 4Pf§cy (24)

Factoring Eq. 24 for the lower root reveals thatkbmg occurs about the minor principal axis:

m2E 1 1 T2El
P :?[E(Ix-l_ly)_E\/(Ix_ly)2+419%y] :TZ (25)
The orthogonal cases shown in Egs. 16 and 17 necstoa considered as potential controlling

cases. Since the shear center coordinates aretzese, equations reduce to roBgsPy, andP;.

Singly-Symmetric
The shear center for a singly-symmetric sectioohss a Cee shape, lies on the axis of symmetry.

If this axis is thex axis, the propertieky andy, are zero. This removes three terms from the
general buckling equation, reducing it to:

x3 L2
e L2

(P—Py)(P—P)(P—P)—P?Z2(P—Py) =0 (26)
One root is obtained by setting ¢ Ry) = 0, orP = Py,. Since the flexural roots are uncoupleg,
andPyy can be replaced B andPy, so the controlling case is the smallePgfand Eq. 19.

Doubly-Symmetric
For a doubly-symmetric section, the shear cent@rcates with the centroid as in the point-

symmetric casexf = Yo = 0), and if the bracing directions align with ghéncipal axeslxy = 0 and
Ptxy = 0. The flexural modes are uncoupled and the Imgclequation reduces to the simple form
in Eq. 27, where the controlling buckling loadhe smallest oPy, Py, andP;.

(P—=P)(P—-P)P—-P)=0 (27)
Fully Braced Against Twisting

It is difficult to restrain a column against twrggi without also restraining translation. But for a
section with high torsional stiffness, the torsiobackling mode can be disregarded. This is



accomplished by settirig = 0 in Eq. 12, thus removing three of the terntee factoring out the
irrelevant root P — Py) produces Eq. 28, which is the same as the pgmtrgetric solution.

(P —Pyy)(P— P) — P,y = 0 (28)

Fully Braced Against Translation
If a column is fully braced in one directidn,approaches zero. Eqg. 12 can be adapted to thés cas

by multiplying each term by /m2EL? and dropping the resulting occurrencesPef?. The

solution is reduced to Eq. 29 which representsdnes buckling about the shear center. For the
case where translation of the centroid is restthine where the shear center coincides with the

centroid, the solution is simpR = P;.

X,

B 5 0Yo ’E
(Brn+20, + 252500, ) P2 + T Ualy = 13)(P~P) =0 (29)
For buckling perpendicular to the bracing directigqg. 19 or 20 should be used as applicable. If
the column is also fully braced against twistingy,. B9 or 20 controls and the buckling load
resolves tdPx or Py as applicable. If the shear center is restraindapth thex andy directions,

Eq. 29 provides the controlling torsional bucklingd.

Other Boundary Conditions
The development of Eq. 12 used pinned end bourmtargitions, with the displacement solutions
in the basic sine forms shown in Eqg. 6. Howevez,gbneral form of the displacement solution to
the differential equations is:

.. nmz n,mz
a; smlT + b; cos ‘L

(30)

Through trigonometric relationships, this form das represented by a shifted sine function as
shown in Eq. 31. Therefore other boundary condstican be accommodated with the same

solution by simply shifting the position byz, along the same multi-wavelength column.

. NMZ n;mz . nm(z+z,)
a; smlT + b; cos‘T = A; sm‘T" (31)

, L, _q1b
where A= |a?+Db?  z,=—tan"'+
n;m a;

Effective length factors are used for various baugdonditions to establish equivalent lengths
which correspond to the half-wavelength of the beatlshape. The development of Eq. 12 used
general half-wavelengths @fn. The effective length factd¢ can be accommodated by using a

different number of half-wavelengtms, such thakKL/n' = L/n, orn’ = Kn. Therefore KyLx,
KyLy, andKiLt can be used in place bf, Ly, andL, respectively. However, the assumption for
coupled flexural buckling still requird&Lx to be a multiple oKLy, or vice-versa.



4. Alternate Forms
To facilitate either direct or iterative solutiorthe general buckling equation (Eg. 12) can be
rearranged into a cubic polynomial form as:

2 12 x2 L2 J’o L LZ xolVo
(15539 o159+ - 55) e s

2

+(PeePry + PPy + PfyPt P, )P — (Pfxpfy - Pfxy)Pt =0 (32)

This and all of the preceding buckling equatiors stated in terms of axial compressive forces.
These can be restated using compressive stredsexe axial stress = P/A.

n?E n?E 1 ( 2
Opy = ——= Opy = — oy = G] + EC —)
ex (Lx/7%)? ey (Ly/Ty)z t T‘g ] w L%
T%E L n%E Ly T2Elyy,
Ofy — = = Opy > Ofy — = = Opy—5 (oF = 33
fx (Le/12)? ex L% fy (Lf/?"y)z ey L% fxy AL% ( )
The general buckling equation (Eq. 12) is provilete using stresses:
2 vs L% 2 xo t
(0= 01y)(0 = 0p) (0 = 00) = 073572 (0 = 0p) = 07 3575 (0 = 0py)
2 XoYo Lf 2 _
+ 20 :o" 5 Oty — (00— at)afxy =0 (34)
Or in the cubic polynomial form as:
_Y3Li _x3Li\ 3 _ _YsLt _ XLt _ XoYo Li| 2
(1 2R a Opc | 1 2 2 + 0%y 212 + 0 — 20¢xy 2 12 a
2 —
+(afxafy + 0t 0t + 05y 0 — afxy)a (afxafy — afxy)at =0 (35)

Dividing Eq. 35 byoy,or,0; and introducing notations for the dimensionlessffocients results
in another useful form containing stress ratiosolwlsum to 1.:

3 2_ 2 2_ 2
A0°+280fyyT° —Cfor,O 2 2 g°—0
y fxy Bo yo fxy _
— — — _|_ —_t — _|_ —=1 (36)
OfxOfyOt OfxOt Ofy0t OfxOfy Ofx Ofy
272 2712 272 2 2
_ Yo Lt x5 Lt _ x5 Lt _ Yo Lt _ Xo0Yo Lt
where a =1-55%-55  F=1-5n v=1-55  86="57%
o =f o “f o “f o &f o f

The orthogonal buckling cases take the followingrfo

g :% [(Uex +0;) =/ (Oex + 0¢)2 — 4B 0,0 whereg =1 — x—gz—zt (37)
s
o =% [(ey + 0¢) = \/(Oey + 01)2 — 4y 0y Py wherg/ = 1 — %é (38)




The specific cases listed in Section 3 are restateel using stresses.

Principal Axes

vé x2 L?
(0 =)0~ o) (0 — o) — 0° 2% L; (6= 01) — 035 (0 — o) = 0

Equal Unbraced Lengths

23’0

(G - Jey)(a - Jex) (G - Ut) -0 (G Jex) —o? _2 (G Jey)
4202 %02

2 Ofxy — Gfxy(a - Ut) =0

Principal Axes, Equal Unbraced Lengths

2
(0= 0) (0 = 06)(0 = 0) = 02 22(0 = G0x) = 02 22 (0 — 0y) = 0

Point-Symmetric

m?E

o = O, o = O, 0 = 0, =
ey ex t (Lg/72)?

Singly-Symmetric

1
0 = O¢y o :E [(Uex + Ut) + \/(Uex + Ut)z - 4,80-exo-t] p=1-
Doubly-Symmetric
0 = Ogy 0 = Oy 0 =0

Fully Braced Against Twisting

m?E

o =0 o =o0 0o=——7
&y ex (Lg/12)?

Fully Braced Against Translation
vs x5 Xo0Yo
(BL+%0,+2%50 0, ) o2 +

ALZ (1 1 I)%y)(o- —0) =0

10

x% L2
2712
Ty Ly

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



5. Numerical Analysis

Several finite element analyses were performedotopare with the predicted elastic buckling
stresses. For flexural modes and torsional modgeeement was very good as expected. But for
combined flexural-torsional modes, it was obsead the torsional displacements did not follow
the anticipated waveform.

When flexural and torsional buckling occur togethiee direction of flexure dictates the direction
of rotation such that the centroid always movesyawam the neutral position in the same
direction as flexure. For cases whéneis less tharls, Figure 4 illustrates that the torsional
waveform exhibits additional curvature, where th&ation between brace points occurs in only
one direction, with opposite curvature at the bramats within the flexural span.

e
o \‘“ \\\\\\ ‘t‘:“\‘.&‘?’- ........

Y
s

s

Lt Lt

Ls

v

Figure 4. Flexural-torsional buckling with < L¢

Whether brace points occur at mid-point, third-p&imuarter-points, or more, the first and last
torsional spans behave as pinned-fixed segmentsewhe theoretical effective length factor is

about 0.7. Therefore it is appropriate to multibfyoy 0.7 for flexural-torsional cases whexds
less tharky.

For cases where the is greater thahy, the direction of flexure dictates the directidiratation
in the same manner. Therefore the half-wavelengthdrsion matches the half-wavelength for

flexure, sa_t should be set equal kg. But for the pure torsional mode (Eqs. 42, 44, é63hould
not use a reducdd.

Figure 5 compares the flexural-torsional bucklingsses for an example Cee shape. The solid
curves are based on Eq. 37 with the adjustmeritsdescribed above. The plotted finite element
results x) were very close for all cases. The current Al®lvgsions match for cases with equal
unbraced lengths. But for all other cases, the A&ikling stresses are much lower and very
conservative.
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Figure 5. Flexural-torsional buckling stress fox€C4x0.5

6. Impact on Design

The equations developed in this investigation diffem those used in the AISI Specification,
specifically for cases where the unbraced lengthsiaequal. For a point-symmetric section, such
as a Zee shape, AISI specifies the critical elabtickling stress as the lesser a@f and
m2E /(KL/r)? for minor principal axis buckling. This developmeaonfirms these calculations,
and clarifies thakKL should be the smaller of the two flexural effeetiengths. However, the
larger effective length must also be checked fakbng about its corresponding axis.

100
% Flexural Buckling of
20 Point-Symmetric Section

87252.75x070

7 70

¥ 60 >

o — | X < 3.5Ly

»h 50

2 Lx = 4ly

S 40

) — -

5 30 Lx = 5Ly
20 Lx:6Ly
10
0

0 20 40 60 80 100 120 140 160 180 200

Slenderness Ly/r,

Figure 6. Flexural buckling stress for point-symrigetection with unequal unbraced lengths
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Figure 6 shows the flexural buckling stress foradal Zee section. The ratig/r, for this section

is 3.5, so if the ratid, /L, exceeds 3.5 the controlling flexural buckling meglabout thex axis.
For the majority of common Zee shapes, columns withor axis bracing at quarter points or
closer need to be checked for buckling about themais.

For a singly-symmetric section, the AISI elastickling equation is equivalent to Eq. 43, except
that the coefficienf must account for cases whére+ L;. If Lt is less thary, the effect of the
shear center offset is reduced and the resulticglimg stress is higher. lf; is greater thahy,

Lt should be taken ds and the resulting buckling stress is higher.

For a non-symmetric section, the AISI elastic bungklequation is equivalent to Eqg. 41, and
therefore does not account for unequal unbracegheror non-principal axes as in Eq. 34. Similar
to the singly-symmetric case,Lif is less than the flexural buckling unbraced leagthe effect of
the shear center offset is reduced and the reguftickling stress is higher. Figure 7 illustrates
this impact for a non-symmetric eave strut. Thimmegle used principal axes so a direct
comparison to AISI values could be made.

100

\ : :
o \ Flexural-Torsional Buckling

Nonsymmetric Section
80

Eave Strut 8x5x3x14ga

70 Lt=Ly=Lx/4

Lt=Ly=Lx/4 (AISI)

Lt=Ly=Lx/3

Lt=Ly=Lx/3 (AISI)

Lt=Ly=Lx/2

\ ) Lt=Ly=Lx/2 (AISI)

20 e o elyix

L T— e
0 20 40 60 80 100 120 140 160 180 200

Slenderness Ly/rx

60

50

40

Buckling Stress (ksi)

30

Figure 7. Buckling stress for non-symmetric sectigth unequal unbraced lengths

The general form of the buckling equation for tbemed flexural mode (Eq. 34) uses a common
half-wavelengthLs, and accommodates the use of non-principal axlesrefore, the resulting
buckling stress is the same for any orientatiotinefcross-section. This is demonstrated in Table 1
where the buckling stress for the non-symmetrieeesixut shown in Figure 7 is calculated using
Eq. 34 for a specific set of unbraced lengths @bua rotated angles.
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Table 1: Flexural-torsional buckling of Eave S#ubx3x14gal+= 180 in,Lt= 90 in
Angle Xo Yo Ot Oty Ofxy Ot o
(deg) (in) (in) (ksi) (ksi) (ksi) (ksi) (ksi)
-10.187 -3.006 -1.059 97.70 19.78 0.00 31.25 19.386

0 -2.771  -1.574 95.26 22.22  -13.56 31.25 19.386
15 -2.269  -2.238 83.59 33.89 -30.01 31.25 19.386
30 -1.613  -2.749 65.25 52.23 -38.41 31.25 19.386
45 -0.846  -3.072 45.18 7230 -36.52 31.25 19.386
60 -0.022  -3.187 28.74 88.75  -24.85 31.25 19.386
75 0.803 -3.084 20.33 97.15 -6.51 31.25 19.386
90 1574 -2.771 22.22 95.26 13.56 31.25 19.386

Since the coupled flexural mode equation is apblecat any orientation, the principal axis case
(Eq. 39) along with the orthogonal cases (Eqgs.r8738) can be readily compared to the current
AISI buckling equation for non-symmetric sectiod@ble 2 summarizes the changes and the
impact to the resulting buckling stress.

Table 2: Comparison to AISI general buckling ecurati
Change Impact to Buckling Stress

Common unbraced length for both No change fotx = Ly
flexural directions (smaller dfx andLy) Increased fotx # Ly
No change for concentric shear center
Shear center offset multiplied thy/ Ly Increased fokt < Lt
No change fott > L¢ (useLt = Ly)
No change fott = Lt
Increased fokt < Lf (use 0.7t)
Increased fokt > Lt (useLt =Ly)

No change fotx = Ly

No change for symmetric sections
Decreased for point-symmetric sections
Increased for non-symmetric sections

Flexural and torsional buckling directions
are coupled

Orthogonal modes checked separately

7. Conclusions

A general column buckling equation for cold-formstéel members has been developed to
consider the impact of unequal unbraced lengthsbaacing directions which do not align with
the principal axes. Coupling of flexural bucklingpdes about the andy axes produces buckling
with a common half-wavelength about a single ratasais. In addition to this mode, the
orthogonal buckling modes must also be considered.

A key assumption in this development was that thd-wavelength for flexural buckling is
consistent throughout the length of the column. tRereffective lengthBxLx andKyLy, if one is
not a multiple of the other, the coupled flexurakkliing inflection points will not be evenly
spaced. Some half-wavelengths will be less thah iidty andK,Ly, providing a stiffening effect
to the overall column. For this and other casesratmundary conditions produce varying
wavelengths, predictions using the buckling equetieveloped herein will be conservative.
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In flexural-torsional buckling, the direction oéfure dictates the direction of rotation. Therefore

the effective length for torsional buckling mayibgacted. IfL; is less thars, the torsional span
behaves as pinned-fixed so that an effective lefegitor of 0.7 should be used. For cases where
Lt is greater thahy, the effective length for torsion should be edoahat for flexure.

These new buckling developments provide refinememthe current AISI equations for cases
with symmetry, and provide a solution for non-pipat axis bracing which has not previously
been available. Unequal unbraced lengths may iseré@ae column buckling stress relative to
current AISI provisions. These cases are commotilized in cold-formed steel framing, and
proper handling is necessary to ensure safe an@ftestive designs. It is therefore recommended
that the AISI design provisions for column bucklingmodified to incorporate these more general
forms. This will benefit the engineer so that mooenplex rational methods such as finite element
analysis are not required.
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9. Notation

u Vv, ¢
u', v', ¢
u™, v, @
Xy

XOI yO
y4

a, B yo
o

Oex Ogy, Gt
Oix, Oty
Oxy
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Appendix: Buckling Stress Comparisons

Table Al. Flexural buckling stress for Z4x1.5x0.5

Lx Ly Buckling Fere Fereaisi  Fererea  Fereaisi  Fererea
(in)  (in) Mode (ksi) (ksi) (ksi) | Fere [ Fere
216 216 XY 1.440 1.440 1.439 1.000 0.999
216 108 XY 5.759 5.759 5.750 1.000 0.998
216 72 XY 12.958 12,958 12.918 1.000 0.997 N\
216 54 XY 23.037 23.037 22.905 1.000 0.994
216 54 X 15.249 - 15.120 - 0.992
Average 1.000 0.996
Std Dev  0.000 0.003
Table A2. Flexural-torsional buckling stress forx€46x0.5
Lx Lt Le/Lx Fere Fereaist  Fererea  Fereasi Fererea =1
(in)  (in)  (in) (ksi) (ksi) (ksi) | Fore | Fere
54 54 1 32.631 32.631 32.273 1.000 0.989 . |.
78 78 1 20.138 20.138 19.867 1.000 0.987
108 108 1 14430 14.430 14.195 1.000 0.984 I
144 144 1 11.378 11.378 11.184 1.000 0.983
180 180 1 9.575 9.575 9.423 1.000 0.984
216 216 1 8.204 8.204 8.092 1.000 0.986
72 144 2 22,153 12.742 21.918 0.575 0.989
90 180 2 17.213 11.380 16.998 0.661 0.988
126 252 2 12.647 9.942 12.461 0.786 0.985
144 72 0.5 29.676 17.607 29.362 0.593 0.989
180 90 0.5 19.746  12.809 19.650 0.649 0.995
216 108 0.5 14.074 9.913 14.037 0.704 0.997
252 126 0.5 10.515 7.938 10.497 0.755 0.998
144 36 0.25 33.598 27519 33.077 0.819 0.985
180 45 0.25 21507 17.943 21.357 0.834 0.993
216 54 0.25 14939 12.697 14.891 0.850 0.997
252 63 0.25 10.978 9.497 10.964 0.865 0.999
288 72 0.25 8.407 7.392 8.402 0.879 0.999
Average 0.832 0.990
Std Dev  0.146 0.006
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Table A3. Buckling stress for Eave Strut 4x3x2

Lx Ly Lt Buckling Fere Fererea  Fererea
(in) (in (in) Mode (ksi) (ksi) | Fere
XYT 4.734 4.700 0.993
216 216 216 XT 5.026 4,986 0.992 ¢
T 5.025 4.986 0.992
XYT 7.269 7.194 0.990
216 216 108 XT 18.346 18.042 0.983
T 12.125 12.095 0.998
XYT 11.900 11.828 0.994
216 108 108 XT 18.346 18.042 0.983
T 12.125 12.095 0.998
XYT 23.428 23.173 0.989
216 72 72 XT 21.936 21.867 0.997
T 23.758  23.427 0.986
XYT 29.063 28.727 0.988
216 108 54 XT 22.312 22.059 0.989
T 40.013  38.498 0.962
XYT 39.518 38.488 0.974
216 54 108 XT 18.346 18.042 0.983
T 12.125 12.095 0.998

Average  0.988
Std Dev  0.009
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