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Abstract 
 
The design of unbraced cold-formed steel beams must consider lateral-torsional 
buckling due to the low torsional stiffness associated with open cross-sections. 
The American Iron and Steel Institute incorporated design equations for the 
critical elastic lateral-torsional buckling stress in the North American 
Specification for the Design of Cold-Formed Steel Members. These equations are 
based on elastic theory for singly-symmetric and doubly-symmetric sections. 
However, the equation for point-symmetric sections is only a rough 
approximation. Furthermore, there are no provisions for lateral-torsional buckling 
of non-symmetric sections, or sections oriented to non-principal axes. This paper 
investigates and develops a general formulation of the lateral-torsional buckling 
equation to broadly cover all cold-formed steel cross-sections. 
 
Introduction 
 
Point-symmetric Zee sections are commonly used for structural members such as 
purlins, but the support directions do not typically align to the principal axes. The 
critical elastic lateral-torsional buckling stress is therefore more difficult to 
determine. The current AISI Specification provision for lateral-torsional buckling 
of point-symmetric sections is based on lateral-torsional buckling of a doubly-
symmetric shape, with a reduction factor of 0.5 to roughly approximate its 
behavior. Numerical analysis has shown that this reduction factor can actually 
vary from 0.3 to 1.0 depending on section geometry. 
 
It has also become more common in practice to use custom shapes as structural 
beams. This is often driven by application constraints, material optimization, and 
ease of material handling, among other factors. The current AISI Specification 
has no provisions for predicting the lateral-torsional buckling strength of non-
symmetric sections, or beams where the support directions do not align with the 
principal axes. 
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The lateral-torsional buckling equations used today for symmetrical shapes were 
originally investigated by Vlasov (1961) and Timoshenko (1961), and further 
studied by Peköz (1969). This paper expands on these developments to consider 
the more general case of any cold-formed steel cross-section at any orientation. 
Numerous symbols are used in this investigation which are defined at the end of 
this paper. 
 
Lateral-Torsional Buckling 
 
An unbraced member subject to a sufficient bending moment may exhibit global 
buckling where the compression portion of the member translates laterally and 
rotates. Considering such a member oriented to its principal axes u and v, with 
compression and bending applied to the ends of the member, the differential 
equations of equilibrium are given in Eq. 1, adapted from Vlasov (1961) and 
Peköz (1969). 
 
 �������� + ���� + ���� − ���	�� = 0 (1) 
 �������� + ���� − ���� − ���	�� = 0  
�������� − ��� − 2���	� − 2���	� − �
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where the end moments are the product of the axial force P and its biaxial 
eccentricities (Mu = Pev, Mv = Peu), and the following geometric properties of the 
cross-section are defined: 
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To solve these differential equations, the displacements u, v, and φ are assigned 
sinusoidal forms, which produce the following set of equations:  
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The solution to these simultaneous equations is obtained by equating the 
determinant of the coefficients on A1, A2, and A3 to zero: 
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Expansion of this determinant gives the principal axis form of the flexural-
torsional buckling equation for a member subjected to eccentric axial load: 
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The development of a general form for non-principal axes would require a 
redevelopment of the differential equations of equilibrium to account for 
unsymmetric bending stress distributions in all three equations. This raises a 
number of complications which make it a difficult and undesirable approach. 
 
This investigation pursues the problem by adapting the principal axis solution to 
a rotated coordinate system. Figure 1 shows an arbitrary cross-section with 
centroid C and shear center O, oriented to orthogonal centroidal x and y axes 
which represent the directions of the supports. The principal u and v axes are 
oriented at an angle α measured counterclockwise from the x and y axes, 
respectively. 
 
If the axial force P is applied at point E on the y axis, the moment produced about 
the x axis is Mx = Pey. The eccentricities associated with point E relative to the 
principal axes are given by eu and ev as follows: 
 
 �� = � sin� �� = � cos� (9) 
 
The application of a pure moment Mx is achieved by increasing the eccentricity ey 
while decreasing the axial load P. Substituting the expressions in Eq. 9 into Eq. 8, 
and taking the limit as ey approaches infinity and P approaches zero produces the 
following equation in terms of Mx: 
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This is rearranged into quadratic form as Eq. 11. It is then convenient to assign 
the nomenclature P'y and βy as defined in Eq. 12 to simplify the lateral-torsional 
buckling solution to Eq. 13. 
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Figure 1. Arbitrary cross-section oriented to x and y support directions 

 
The same approach can be used for developing the lateral-torsional buckling 
moment about the y axis. If point E is placed on the x axis, producing moment 
My = Pex, the following eccentricity relationships exist: 
 
 �� = �� cos� �� = −�� sin� (14) 
 
Substituting the expressions in Eq. 14 into Eq. 8, and taking the limit as ex 
approaches infinity and P approaches zero produces Eq. 15 in terms of My, with 
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the quadratic form shown as Eq. 16. Then assigning the nomenclature for P'x and 
βx as defined in Eq. 17 simplifies the My lateral-torsional buckling solution to 
Eq. 18. 
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Axis Transformation 
 
The expressions for P' and β in equations 12 and 17 use principal axis properties 
Iu, Iv, βu, βv, Uu, and Uv. Standard design procedures require section property 
calculations using the x and y axes which correspond to the member orientation. 
Numerical integration for both orientations requires additional effort, so the 
transformation of these properties between coordinate axes is beneficial. 
 
The definitions for P'y and P'x in equations 12 and 17 can be factored as shown in 
Eq. 19. The principal axis moments of inertia must then be stated in terms of x 
and y axes. 
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The location of each point in the cross-section is expressed in principal axis 
coordinates with the following relationships: 
 
 � = � cos� + � sin� � = � cos� − � sin� (20) 
 
Substituting Eq. 20 into the expressions for principal axis moments of inertia 
defined in Eq. 4 produces the following equations, where Ix and Iy are the moments 
of inertia about the x and y axes, and Ixy is the product of inertia. 
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From fundamental mechanics of materials, we recognize the following additional 
relationships derived using double-angle trigonometric identities and Mohr’s 
circle: 
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Substituting the relationships in Eq. 25 and Eq. 26 into Eq. 19 provides the 
definitions for P'y and P'x in terms of x and y section properties. 
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In a similar manner, the definitions for Uu and Uv can be stated in terms of x and 
y axis properties by substituting Eq. 20 into Eq. 3, which reduces to these 
straightforward transformations: 
 
 �� = �� cos� − � sin� �� = � cos� + �� sin� (29) 
where 
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Then utilizing Eq. 20 for the shear center coordinates (xo, yo) in Eq. 2, and 
substituting the results into the expressions for β in Eq. 12 and Eq. 17, provides 
the following relationships: 
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Further substitutions using Eq. 29 and the relationships in Eqs. 23 to 26 lead to 
these final forms in terms of x and y section properties: 
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Specific Cases 
 
Principal Axes 
If the support directions align with the principal axes, Ixy = 0. This simplifies the 
general solution such that Py and Px may be used in place of P'y and P'x , and the 
properties βy and βx do not require transformation. The solution is reduced to the 
following: 
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Point-Symmetric 
For point-symmetric sections, the shear center coincides with the centroid (i.e., 
xo = 0, yo = 0). Furthermore, the properties Ux and Uy are equal to zero, thus βy 
and βx are also zero. The lateral-torsional buckling equations take the following 
simpler form: 
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Symmetric About X Axis 
For any section symmetric about the x axis, including doubly-symmetric sections, 
the properties Ixy, Ux, yo, and βy are all zero. Therefore the lateral-torsional 
buckling equation for bending about the x axis is simply: 
 
 �� = ±�����
 (36) 
 
Symmetric About Y Axis 
For any section symmetric about the y axis, including doubly-symmetric sections, 
the properties Ixy, Uy, xo, and βx are all zero. Therefore the lateral-torsional 
buckling equation for bending about the y axis is simply: 
 
 � = ±������
 (37) 
 
Fully Braced in X Direction 
If a member is fully braced in the x direction, P'y approaches infinity and 1/P'y 
becomes zero. The Mx

2 term in Eq. 11 drops out, thus reducing the solution to 
Eq. 38. There is only one root to the equation, so the sign of βy dictates the sign 



of the torsional buckling moment. If βy is very small, the member is not subject 
to torsional buckling. 
 
 �� = ����
 2
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Fully Braced in Y Direction 
If a member is fully braced in the y direction, P'x approaches infinity and 1/P'x 
becomes zero. The My

2 term in Eq. 16 drops out, thus reducing the solution to 
Eq. 39. There is only one root to the equation, so the sign of βx dictates the sign 
of the torsional buckling moment. If βx is very small, the member is not subject 
to torsional buckling. 
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Stress Representation 
 
The above lateral-torsional buckling moment equations were developed using 
axial compressive forces. These can be restated using compressive stresses, where 
axial stress σ = P/A. 
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Principal Axes 
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Point-Symmetric 
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Symmetric About X Axis 
 
 �� = ±����+�+
 (46) 
 
Symmetric About Y Axis 
 
 � = ±����+��+
 (47) 
 
Fully Braced in X Direction 
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Fully Braced in Y Direction 
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Illustrative Example 
 
Given the eave strut section shown in Figure 2 with the section properties 
provided in Table 1, determine the positive and negative lateral-torsional buckling 
moments about the x and y axes for various unbraced lengths. 
 

 
Figure 2. Eave Strut 8x5x3x14ga 

 



Table 1: Section Properties for Eave Strut 8x5x3x14ga 

A 1.162 in2 Ixy –1.754 in4 

Ix 12.317 in4 Iy 2.873 in4 

Ux 5.035 in5 Uy 9.637 in5 

rx 3.256 in ry 1.572 in 

xo –2.771 in yo –1.574 in 

Io 26.991 in4 ro 4.820 in 

J 0.001844 in4 Cw 22.89 in6 

 
 
Calculate βy and βx using Eq. 32 
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Calculate positive Mx for L = 300 in 
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Calculate positive My for L = 300 in 
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Calculate negative Mx for L = 480 in 
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Calculate negative My for L = 960 in 
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Finite strip analyses for these cases produced the following results, which are 
within 0.5% of the calculated values: Mx = 15.85 k-in, My = 9.71 k-in, 
Mx = –21.34 k-in, My = –36.29 k-in. 
 
Impact on Design 
 
For singly-symmetric and doubly-symmetric sections, the AISI (2016) provisions 
are equivalent to Eqs. 44, 46, and 47. For point-symmetric sections, the AISI 
provisions apply a reduction factor of 0.5 to Eq. 46. However, this reduction factor 
should depend on the section geometry as reflected in Eq. 45. The ratio of Eq. 45 
to Eq. 46 quantifies the reduction factor as �1 − ��� ���⁄ . 
 
The AISI Design Manual (2013) contains several tables and charts for ordinary 
Zee sections. Table 2 below provides a comparison of the elastic buckling stress 
calculations for these sections, where one thickness was chosen to represent each 
size. The 0.5 reduction factor used in the current AISI provisions is very 
conservative for these sections, averaging 27% below the theoretical elastic 
buckling stress. The finite strip method (FSM) provided elastic buckling stresses 
which essentially match the theoretical values. 
 



Table 2: Lateral-torsional buckling stress for various Zee shapes 
Section 

(L = 180 in) 
Fcre 
(ksi) 

Fcre AISI 
(ksi) 

Fcre FSM 
(ksi) 

Fcre AISI  
/ Fcre 

Fcre FSM  
/ Fcre 

12ZS3.25x105 21.43 15.24 21.23 0.711 0.991 

12ZS2.75x105 16.52 11.50 16.42 0.696 0.994 

12ZS2.25x105 12.20 8.29 12.14 0.679 0.996 

10ZS3.25x105 22.09 16.15 21.95 0.731 0.994 

10ZS2.75x105 17.22 12.32 17.14 0.716 0.995 

10ZS2.25x105 12.90  9.01 12.86 0.698 0.997 

9ZS2.25x105 13.33  9.46 13.29 0.709 0.997 

8ZS3.25x105 22.96 17.32 22.83 0.755 0.994 

8ZS2.75x105 18.15 13.41 18.08 0.739 0.996 

8ZS2.25x105 13.86  9.99 13.84 0.721 0.999 

7ZS2.25x105 14.53 10.66 14.52 0.734 0.999 

6ZS2.25x105 15.44 11.54 15.45 0.747 1.000 

4ZS2.25x070 15.70 12.16 15.71 0.774 1.000 

3.5ZS1.5x070  9.00  6.86  9.01 0.762 1.001 
  

 Average 0.727 0.997 

   Std Dev 0.027 0.003 

 
The proportions of these Zee sections are similar, so the level of conservatism 
(22% to 32%) is fairly consistent. However, the product of inertia Ixy is sensitive 
to the web angle of a Zee section. 
 
Figure 3 illustrates how changes to the web angle for the sections in Table 2 
impact the ratio of the AISI buckling stress to the theoretical buckling stress, 
which varies by ±50%. For extreme cases where Ixy

2 approaches IxIy, the 
theoretical buckling stress approaches zero and the AISI provisions become very 
unconservative. 
 
The AISI Specification provides an alternate, simpler equation, which is also 
plotted in Figure 3. For Zee sections with 90° webs, this equation provides 
acceptable, conservative results. For other web angles, the alternate equation is 
either very conservative or very unconservative. 
 



 
Figure 3. Comparison of AISI to theoretical elastic buckling stress for various Zee shapes 
 
For angles and any other sections not oriented to the principal axes, there are no 
AISI provisions for lateral-torsional buckling, although numerical analyses such 
as the finite strip method may be applied as a rational analysis. 
 
Conclusions 
 
A general lateral-torsional buckling equation has been developed which is 
applicable to any cold-formed steel shape. Two factors in this equation were 
defined using principal axis properties of the cross-section, but axis 
transformations developed herein permit calculation of these factors using x and 
y axis section properties which correspond to the member orientation. 
 
Buckling stress predictions were compared to numerical solutions for a variety of 
sections and lengths. The finite strip method provided very good agreement. Cases 
with large slenderness had extremely close results, whereas slight deviations were 
observed as slenderness decreased. 
 
This development fulfills a specific need in the industry to accurately predict 
lateral-torsional buckling strength for point-symmetric and non-symmetric 
shapes. The current AISI provisions for point-symmetric sections were shown to 
be overly conservative for common Zee shapes. For some less common point-
symmetric sections, the AISI provisions could be very unconservative. It is 



therefore recommended that the AISI provisions be modified to use this elastic 
buckling equation. 
 
Currently AISI has no provisions for lateral-torsional buckling of non-symmetric 
shapes. The inclusion of this general buckling equation will benefit the engineer 
so that more complex rational methods such as finite strip analysis are not 
required. 
 
Notation 
 
A Area of cross-section 
Cw Torsional warping constant 
E Modulus of elasticity 
eu, ev Eccentricity of axial load relative to u and v axes 
ex, ey Eccentricity of axial load relative to x and y axes 
G Shear modulus of elasticity 
J Saint-Venant torsion constant 
Iu, Iv Moment of inertia about principal u and v axes 
Ix, Iy Moment of inertia about x and y axes 
Ixy Product of inertia about x and y axes 
L Beam length 
Mx, My Critical elastic buckling moment about x and y axes 
P Critical elastic buckling axial load 
Pu, Pv Critical axial load for elastic buckling about principal u and v axes 
Px, Py, Pt Critical axial load for elastic buckling about x axis, y axis, and 

torsion 
P'x, P'y Adjusted axial load for elastic buckling about non-principal x and y 

axes 
ro Polar radius of gyration about shear center 
rx, ry Radius of gyration about x and y axes 
Uu, Uv Geometric properties of cross-section as defined in Eq. 3 
Ux, Uy Geometric properties of cross-section as defined in Eq. 30 
u, v Principal coordinate axes of cross-section 
u, v, φ Buckling displacements in the u and v directions, and angle of twist 
u", v", φ" Second derivative of buckling displacements with respect to 

longitudinal axis 
u"", v"" , φ""  Fourth derivative of buckling displacements with respect to 

longitudinal axis 
uo, vo Principal axis coordinates of shear center relative to centroid 



x, y Coordinate axes of cross-section corresponding to support 
directions 

xo, yo Coordinates of shear center relative to centroid 
α Angle of u principal axis measured counter-clockwise from x axis 
βu, βv Geometric properties of cross-section as defined in Eq. 2 
βx, βy Geometric properties of cross-section as defined in Eq. 32 
σex, σey, σt Critical axial stress for elastic buckling about x axis, y axis, and 

torsion 
σ'ex, σ'ey Adjusted axial stress for elastic buckling about non-principal x and 

y axes 
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