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Abstract

The design of unbraced cold-formed steel beams nwrsdider lateral-torsional
buckling due to the low torsional stiffness asstdawith open cross-sections.
The American Iron and Steel Institute incorporatlsign equations for the
critical elastic lateral-torsional buckling stresa the North American
Specification for the Design of Cold-Formed Steeribers. These equations are
based on elastic theory for singly-symmetric andbdypsymmetric sections.
However, the equation for point-symmetric sectioiss only a rough
approximation. Furthermore, there are no provisfontateral-torsional buckling
of non-symmetric sections, or sections orientexaio-principal axes. This paper
investigates and develops a general formulatiotheflateral-torsional buckling
equation to broadly cover all cold-formed steeksrgections.

Introduction

Point-symmetric Zee sections are commonly usedtfactural members such as
purlins, but the support directions do not typigallign to the principal axes. The
critical elastic lateral-torsional buckling streiss therefore more difficult to
determine. The current AISI Specification provisfonlateral-torsional buckling
of point-symmetric sections is based on lateraditoral buckling of a doubly-
symmetric shape, with a reduction factor of 0.5réoghly approximate its
behavior. Numerical analysis has shown that thikicgon factor can actually
vary from 0.3 to 1.0 depending on section geometry.

It has also become more common in practice to ustom shapes as structural
beams. This is often driven by application constsimaterial optimization, and
ease of material handling, among other factors. dureent AlISI Specification
has no provisions for predicting the lateral-tonsibbuckling strength of non-
symmetric sections, or beams where the supporttires do not align with the
principal axes.
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The lateral-torsional buckling equations used todaysymmetrical shapes were
originally investigated by Vlasov (1961) and Timesko (1961), and further
studied by Pekdz (1969). This paper expands ore ttiegelopments to consider
the more general case of any cold-formed steekesestion at any orientation.
Numerous symbols are used in this investigatiorchviaire defined at the end of
this paper.

Lateral-Torsional Buckling

An unbraced member subject to a sufficient bendiognent may exhibit global
buckling where the compression portion of the menttanslates laterally and
rotates. Considering such a member oriented tpritxipal axeau andv, with
compression and bending applied to the ends ofitbmber, the differential
equations of equilibrium are given in Eq. 1, addpt®m Vlasov (1961) and
Pekoz (1969).

ELu"" +Pu" +P(v, —e,)¢p"”" =0 1)
EL,v"" + Pv" —P(u, —e, )¢ =0
EC,¢"" — (G] — 2B,Pe, — 2,Pe, — Pr2)¢" + P(v, — e, )u” — P(u, — e, )v"”" =0

where the end moments are the product of the daiak P and its biaxial
eccentricities, = Pe,, My = Pq,), and the following geometric properties of the
cross-section are defined:

Bo == Bu= gy o @)
U, = [v3dA + [u*vdA U, = [uldA + [v?udA (3)
I, = [v?dA I, = [u*dA (4)

To solve these differential equations, the displaetsu, v, andg@are assigned
sinusoidal forms, which produce the following skequations:

(P, — P)Ay + (Pe, —Pv,)A3; =0 (%)
(Pu_P)Az_(Peu_PuO)A3 = 0
(Pey, — PUg)A; — (Pey — Pug)A; + [(P. — P)roz — 2B,Pe, — 2f,Pe,]A; =0

where

P =m2EL/I* B, =n?EL/I* P, =—(G] +m2EC,/1?) (6)



The solution to these simultaneous equations igildd by equating the
determinant of the coefficients éa, Az, andAs to zero:

P,—P 0 Pe, — Pv,
0 P, —P —Pe, + Pu, =0 )
Pe,—Pv, —Pe,+Pu, (P.—P)r?—2B,Pe,—2p5,Pe,

Expansion of this determinant gives the principgik dorm of the flexural-
torsional buckling equation for a member subjetteelccentric axial load:

(Pv - P)(Pu - P)[(Pt - P)roz - Zﬁvpev - ZﬁuPeu]
—(P, — P)(Pe, — Pv,)*> — (B, — P)(Pey, — Pu,)* =0 (8)

The development of a general form for non-principaes would require a
redevelopment of the differential equations of &hdum to account for
unsymmetric bending stress distributions in aleéhequations. This raises a
number of complications which make it a difficuttcaundesirable approach.

This investigation pursues the problem by adaptegprincipal axis solution to
a rotated coordinate system. Figure 1 shows artrampicross-section with
centroidC and shear centdd, oriented to orthogonal centroidalandy axes

which represent the directions of the supports. piiecipalu andv axes are

oriented at an angler measured counterclockwise from tkeandy axes,
respectively.

If the axial forceP is applied at poinE on they axis, the moment produced about
the x axis isMx = Pg,. The eccentricities associated with pdintelative to the
principal axes are given lgs ande, as follows:

e, = ey sina e, = eycosa (9)

The application of a pure momeMik is achieved by increasing the eccentriejty
while decreasing the axial lo&d Substituting the expressions in Eq. 9 into Eq. 8,
and taking the limit as, approaches infinity anél approaches zero produces the
following equation in terms d¥ly:

P,P,P,v2 — 2f3,P,P,M, cosa — 23,P,P,M, sina
—P,M?cos?a — P,M?sin’a =0 (10)



This is rearranged into quadratic form as Eq. 1is then convenient to assign

the nomenclatur®’y and 5, as defined in Eqg. 12 to simplify the lateral-torsl
buckling solution to Eq. 13.

Py, cos? a+Py, sin? a

— M2 + 2(B, cosa + B, sina)M, — Pr2 = (11
I Py Py — 3 2
Y = prcostatpysinia ﬁy—ﬁvcosa+ﬁusma (12)

M, = B[-By + JB5 +T7P./P)] (13)

Figure 1. Arbitrary cross-section oriented to x grglipport directions
The same approach can be used for developing tbelldorsional buckling

moment about thg axis. If pointE is placed on the axis, producing moment
My = Pg, the following eccentricity relationships exist:

ey, = €e,Ccosa e, = —e,sina (14)

Substituting the expressions in Eq. 14 into Eqald taking the limit asx
approaches infinity anBt approaches zero produces Eq. 15 in ternidypfvith



the quadratic form shown as Eq. 16. Then assigh@gomenclature fd?'x and
S as defined in Eq. 17 simplifies tiy lateral-torsional buckling solution to
Eq. 18.

P,P,P¢ + 2B,P,P,M,, sina — 23, P, P,M,, cos a

—P,M} sin* a — P,Mj cos®* a = 0 (15)
IWSZI':I‘%MMJZ, + 2(By cosa — B, sina)M, — P,r2 =0 (16)
P, = m By = By cosa — B, sina a7
My = Pi[—By £ B} + 13P./F] (18)

AXxis Transfor mation

The expressions fd?' andSin equations 12 and 17 use principal axis properti
lu, v, B, By, Uy, andU,. Standard design procedures require section pgsoper
calculations using the andy axes which correspond to the member orientation.
Numerical integration for both orientations reqgairadditional effort, so the
transformation of these properties between cootéiages is beneficial.

The definitions folP'y andP'x in equations 12 and 17 can be factored as shown in
Eq. 19. The principal axis moments of inertia nthein be stated in terms »f
andy axes.

2 2
w°E Iyl n°E Iyl
A uv A uv (19)

y L2 I cos? a+l,sin? a x 12 I,cos? a+lysin? a

The location of each point in the cross-sectiomxpressed in principal axis
coordinates with the following relationships:

u=xcosa+ysina v=ycosa—xsina (20)

Substituting Eqg. 20 into the expressions for ppatiaxis moments of inertia
defined in Eq. 4 produces the following equatiaviserelx andly are the moments
of inertia about the andy axes, andlyy is the product of inertia.

L, = Iy cos® a + I, sin® @ — 21, sina cos @ (21)
L, = I, cos® a + I, sin® a + 2I,,,, sina cos a (22)



From fundamental mechanics of materials, we reaagthie following additional
relationships derived using double-angle trigonaimeitientities and Mohr's
circle:

tan 2a = 2 (23)
x~ 1y
1 1 > >
Lo, I =5 (e + 1) £5U = )7 + 413, (24)
Ll, = LI, — I2, (25)
I, =1I,cos®* a+I,sin*a I, =1, cos* a + I, sin* a (26)

Substituting the relationships in Eq. 25 and Eq.ir#6 Eq. 19 provides the
definitions forP'y andP'x in terms ofx andy section properties.

1 1333’ I 1333’
P =P 1—E P, =P, 1—E 27
where
n2EL n2Ely
P, = = 4 P, = = (28)

In a similar manner, the definitions fog, andUy can be stated in termsxfnd
y axis properties by substituting Eq. 20 into Eq.which reduces to these
straightforward transformations:

U, =Uycosa—U,sina U, =Uycosa+ Uysina (29)
where
Uy = [y3dA+ [ x*ydA U, = [x*dA + [ y*xdA (30)

Then utilizing Eqg. 20 for the shear center coortfinako, Yo) in Eg. 2, and
substituting the results into the expressionsgan Eq. 12 and Eq. 17, provides
the following relationships:

=Y Yosing — = —Ygng -
By = 21, C0S @ + 2, Sina = Yo By = 21, COS @ — o -sina —x, (31)
Further substitutions using Eq. 29 and the relatigps in Eqs. 23 to 26 lead to
these final forms in terms afandy section properties:

Uxly—Uylxy Uylx—Uxlxy
— A A, = ==X 32
B Yo 2(lely-1Zy) Yo B 2(Ixly—1%y) o (32)



Specific Cases

Principal Axes

If the support directions align with the princiades,lxy = 0. This simplifies the
general solution such thBy andPx may be used in place Bf, andP'x , and the
propertiesB, and S do not require transformation. The solution isueat to the
following:

M, = P,[-B, + \JBZ + 12P,/P,| M, = P.|—B, +/BZ+12P:/B] (33)

Ux

ﬁyzz_ya Bx:%_xo (34)
Point-Symmetric
For point-symmetric sections, the shear centercod@s with the centroid (i.e.,
Xo = 0, Yo = 0). Furthermore, the propertiels andUy are equal to zero, thyg
and S are also zero. The lateral-torsional buckling ¢igua take the following
simpler form:

M, = irom My = irom (35)

Symmetric About X Axis

For any section symmetric about thaxis, including doubly-symmetric sections,
the propertiedyy, Ux, Yo, and B3, are all zero. Therefore the lateral-torsional
buckling equation for bending about thaxis is simply:

M, = +r,./B,P, (36)

Symmetric About Y Axis

For any section symmetric about thaxis, including doubly-symmetric sections,
the propertiedyy, Uy, Xo, and S« are all zero. Therefore the lateral-torsional
buckling equation for bending about thaxis is simply:

M, = +7,./P.P; (37)

Fully Braced in X Direction

If a member is fully braced in thedirection,P'y approaches infinity and R
becomes zero. Thel? term in Eq. 11 drops out, thus reducing the sotutb
Eqg. 38. There is only one root to the equatiorthsosign off3, dictates the sign



of the torsional buckling moment. & is very small, the member is not subject
to torsional buckling.

=17P, /2B, (38)

Fully Braced in Y Direction

If a member is fully braced in thedirection,P'x approaches infinity and Rk
becomes zero. Thiely? term in Eq. 16 drops out, thus reducing the sotutb
Eq. 39. There is only one root to the equatiortheosign off dictates the sign
of the torsional buckling moment. & is very small, the member is not subject
to torsional buckling.

=7 Pt/zﬁx (39)
Stress Representation
The above lateral-torsional buckling moment equegtiovere developed using

axial compressive forces. These can be restatad osmpressive stresses, where
axial stressr = P/A.

M, = Ao_éy[_ﬁy + ﬁ;\% + TOZO't/O'éy] My = Ao—éx [_ﬁx + Y ﬁ)% + TOZO't/O'éX] (40) |

ro_ I I I
Opy = Oy ( 13;;) Oex = Oex (1 13;;) (41)
n?E n2E
%er = Wnyy2 Oex = Wi (42)
1
0 = (G] + m%EC,,/1?) (43)

Principal Axes
M, = Ao_ey[_ﬁy + ﬁ;\% + rozo_t/o—ey] My = A0y [_ﬁx + Y ﬁ)% + TOZO}/O'EX] (44)

Point-Symmetric

M, = tAr, /0sy0¢ M, = +Ar,\/0¢x0; (45)



Symmetric About X Axis

M, = tAr, [0.,0, (46)
Symmetric About Y Axis

M, = +A1,\[0.,0, (47)
Fully Braced in X Direction

M, = Ar}o. /2B, (48)
Fully Braced in Y Direction

M, = Ar2o,/2B, (49)

[llustrative Example

Given the eave strut section shown in Figure 2 wiite section properties
provided in Table 1, determine the positive anchtieg lateral-torsional buckling
moments about theandy axes for various unbraced lengths.

.

J

Figure 2. Eave Strut 8x5x3x14ga



Table 1: Section Properties for Eave Strut 8x5x8eal4

A 1.162 in? Ixy -1.754 in*
Ix 12.317 in* ly 2.873 in?
Ux 5.035 in® Uy 9.637 in®
rx 3.256 in ry 1.572 in
Xo —-2.771 in Yo -1.574 in
lo 26.991 in* lo 4.820 in
J 0.001844 in* Cw 22.89 in

Calculate3, and S« using Eq. 32

B, = (5.035)(2.873)—(9.637)(—1.754)
Y T 2[(12.317)(2.873)—(-1.754)2]

— (~1.574) = 2.059 in

B, = (9-637)(12.317)=(5.035)(-1.754)
X 7 2[(12.317)(2.873)—(~1.754)2]

(—-2.771) = 4.744 in

Calculate positive Mfor L = 300 in

1

— 2 21 — ;

0 = rrezcraror [11300(0.001844) + m229500(22.89)/300%] = 3.515 ks
, _ m?29500 [ _ (-1754)? = 7.299 ksi

Oey = (300/1.572)2 (12317)2873)) — st

M, = 1.162(7.299)[—2.059 + /2.059% + 4.8202(3.515/7.299)| = 15.85 k-in

Calculate positive pfor L = 300 in

1

— 2 21 — ;

0t = rrezraror [11300(0.001844) + m229500(22.89)/300%] = 3.515 ks
, _ m229500 [ _ (-1.754)? — 3131 ksi

Oex = (300/3.256)2 (12317)2873)) T T st

My, = 1.162(31.31)[—4.744 + \[4.744% + 4.8202(3.515/31.31)| = 9.73 k-in



Calculate negative Mfor L =480 in

_ 1
1.162(4.820)2

[11300(0.001844) + 7229500(22.89)/480%] = 1.843 ksi

O

ol = 229500 [ (-1.754)?
ey T (480/1.572)2 (12.317)(2.873)

] = 2.851 ksi

M, = 1.162(2.851)[—2.059 — /2.059% + 4.8202(1.843/2.851)| = —21.36 k-in

Calculate negative for L = 960 in

_ 1
1.162(4.820)2

[11300(0.001844) + 7229500(22.89)/9607] = 1.040 ksi

Ot

= 3.058 ksi

1229500 [1 (~-1.754)2

!
g, =
€X  (960/3.256)2 (12.317)(2.873)

M, = 1.162(3.058)[—4.744 — /4.744? + 4.8202(1.040/3.058)| = —36.45 k-in

Finite strip analyses for these cases producedolf@ving results, which are
within 0.5% of the calculated valued$lx = 15.85k-in, My = 9.71 k-in,
Mx = —21.34k-in, My = —36.2%-in.

Impact on Design

For singly-symmetric and doubly-symmetric sectidghe, AlSI (2016) provisions
are equivalent to Egs. 44, 46, and 47. For pointregtric sections, the AISI
provisions apply a reduction factor of 0.5 to E6. Mowever, this reduction factor
should depend on the section geometry as refléctEd. 45. The ratio of Eq. 45

to Eq. 46 quantifies the reduction factor, i — 1%, /1L,

The AISI Design Manual (2013) contains severaldatdnd charts for ordinary
Zee sections. Table 2 below provides a compari$oheoelastic buckling stress
calculations for these sections, where one thickmes chosen to represent each
size. The 0.5 reduction factor used in the curr&l8l provisions is very
conservative for these sections, averaging 27%wbéle theoretical elastic
buckling stress. The finite strip method (FSM) pdexd elastic buckling stresses
which essentially match the theoretical values.



Table 2: Lateral-torsional buckling stress for vas Zee shapes

Section Fere Fere aisi Fcre Fsm Fere aisi Fcre Fsm
(L=180in)  (ksi) (ksi) (ksi) / Fore / Fere
127S3.25x105 21.43 15.24 21.23 0.711 0.991

127S2.75x105 16.52 11.50 16.42 0.696 0.994
127S2.25x105 12.20 8.29 12.14 0.679 0.996
10ZS3.25x105 22.09 16.15 21.95 0.731 0.994
10ZS2.75x105 17.22 12.32 17.14 0.716 0.995
10ZS2.25x105 12.90 9.01 12.86 0.698 0.997
97S2.25x105 13.33 9.46 13.29 0.709 0.997
82S3.25x105 22.96 17.32 22.83 0.755 0.994
82S2.75x105 18.15 13.41 18.08 0.739 0.996
8252.25x105 13.86 9.99 13.84 0.721 0.999
72S2.25x105 14.53 10.66 14.52 0.734 0.999
62S2.25x105 15.44 11.54 15.45 0.747 1.000
4752.25x070 15.70 12.16 15.71 0.774 1.000
3.5ZS1.5x070 9.00 6.86 9.01 0.762 1.001
Average 0.727 0.997
Std Dev  0.027 0.003

The proportions of these Zee sections are sinslarthe level of conservatism
(22% to 32%) is fairly consistent. However, thequat of inertialxy is sensitive
to the web angle of a Zee section.

Figure 3 illustrates how changes to the web angtetfe sections in Table 2
impact the ratio of the AISI buckling stress to theoretical buckling stress,
which varies by +50%. For extreme cases whiggé approached,ly, the
theoretical buckling stress approaches zero andlBeprovisions become very
unconservative.

The AISI Specification provides an alternate, senpdquation, which is also
plotted in Figure 3. For Zee sections with 90° welhés equation provides
acceptable, conservative results. For other welleanthe alternate equation is
either very conservative or very unconservative.
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Figure 3. Comparison of AlSI to theoretical elagticckling stress for various Zee shapes

For angles and any other sections not orientetegtincipal axes, there are no
AISI provisions for lateral-torsional buckling, lattugh numerical analyses such
as the finite strip method may be applied as amatianalysis.

Conclusions

A general lateral-torsional buckling equation haerb developed which is
applicable to any cold-formed steel shape. Twoofacin this equation were
defined using principal axis properties of the sresction, but axis
transformations developed herein permit calculatibthese factors usingand
y axis section properties which correspond to thenb@r orientation.

Buckling stress predictions were compared to nuraésolutions for a variety of
sections and lengths. The finite strip method pteglivery good agreement. Cases
with large slenderness had extremely close resuitsreas slight deviations were
observed as slenderness decreased.

This development fulfills a specific need in thelustry to accurately predict
lateral-torsional buckling strength for point-syntne and non-symmetric
shapes. The current AISI provisions for point-syrtrinesections were shown to
be overly conservative for common Zee shapes. &oresless common point-
symmetric sections, the AISI provisions could beyvanconservative. It is



therefore recommended that the AISI provisions loglifired to use this elastic
buckling equation.

Currently AISI has no provisions for lateral-tons# buckling of non-symmetric
shapes. The inclusion of this general buckling &qoawill benefit the engineer
so that more complex rational methods such asefisitip analysis are not

required.
Notation

A
Cw
E
ey, &

&, &
G

J
Iu, |v

I, ly

Ly

L

Mx, My
P

Pu, Py
Py, Py, Pt

Py, Py

lo

Mx, Ty

Uu, Uy
Uy, Uy
u, v

uv, ¢
u", v", ¢'

u™, v, (0"'

Uo, Vo

Area of cross-section

Torsional warping constant

Modulus of elasticity

Eccentricity of axial load relative tnandv axes

Eccentricity of axial load relative toandy axes

Shear modulus of elasticity

Saint-Venant torsion constant

Moment of inertia about principalandv axes

Moment of inertia about andy axes

Product of inertia aboutandy axes

Beam length

Critical elastic buckling moment abauandy axes

Critical elastic buckling axial load

Critical axial load for elastic buckling aboutpripalu andv axes
Critical axial load for elastic buckling aboxtaxis, y axis, and
torsion

Adjusted axial load for elastic buckling about fimcipalx andy
axes

Polar radius of gyration about shear center

Radius of gyration aboutandy axes

Geometric properties of cross-section as defindgl. 3
Geometric properties of cross-section as defindgiy. 30
Principal coordinate axes of cross-section

Buckling displacements in theandv directions, and angle of twist
Second derivative of buckling displacements witspect to
longitudinal axis

Fourth derivative of buckling displacements withspect to
longitudinal axis

Principal axis coordinates of shear center redativcentroid



XY Coordinate axes of cross-section corresponding stgpport

directions

Xo, Yo Coordinates of shear center relative to centroid

a Angle ofu principal axis measured counter-clockwise froaxis

L, B Geometric properties of cross-section as defindgl. 2

L By Geometric properties of cross-section as defindgly. 32

Oex, Oy, ¢ Critical axial stress for elastic buckling aboutxis, y axis, and
torsion

Oex, Tey Adjusted axial stress for elastic buckling aboomprincipalx and
y axes
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